MCFormer: A Transformer-Based Detector for Molecular Communication with Accelerated Particle-Based Solution

The whole framework.

Abstract

Molecular communication (MC) enables communication at the nanoscale where traditional electromagnetic waves are ineffective, and accurate signal detection is essential for practical implementation. However, due to the lack of accurate mathematical models, statistical-based signal detection methods are not applicable, and existing deep learning-based models exhibit relative simplicity in design. This paper integrates ideas from natural language processing into MC and proposes the MCFormer, a detector based on the classical Transformer model. Additionally, we propose an accelerated particle-based simulation algorithm using matrix operations for rapid generation of high-quality training data with a lower complexity than traditional methods. The experimental results demonstrate that the MCFormer achieves nearly optimal accuracy in a noise-free environment, surpassing the performance of the Deep Neural Network (DNN). Moreover, MCFormer can show optimal performance in environments with significant levels of unknown noise. All the codes can be found at https://github.com/Xiwen-Lu/MCFormer.

Publication
IEEE Communications Letters
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.

Xiwen Lu 陆玺文
Xiwen Lu 陆玺文
PhD of Micro/Nano Robotics

My research interests include micro/nano robotics, medical equipment and artificial intelligence.